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Abstract 

The identity of the enantiomorph-sensitive three-phase 
structure seminvariants, T -  ~0h,k,~, + ~0h~kj 2 + ~0h3k3~3 , in 
space group P21 is derived via the sextet extension. It is 
shown, in addition, that the extension concept is 
applicable also to all three-phase sums (variants) V = 
(ffh,k,I, -t- ~h:k21 ~ -t- ~h3k31,, provided only that k~ + k 2 + k 3 
= 0. The T and V estimating procedures have been 
tested and are equally reliable, as expected. More 
importantly, it appears from the initial applications that 
the number of phase sums T and V, reliably estimated 
to be + zr/2, is often quite large, and that they relate the 
phases of the largest E's. In the cases that there are 
many reliable such indications, these relations are very 
useful for the discrimination between the centro- 
symmetric and enantiomorph-sensitive phases pre- 
ceding the final phase-determination step. Thus 
enantiomorph specification, a perennial problem in this 
space group, is facilitated. 

1. Introduction 

The problem of the definition and maintenance of the 
enantiomorph in space groups like P2~ is often a 
difficult one to resolve in applications of direct 
methods. The first attempt to fix the enantiomorph 
definitively (strong enantiomorph discrimination) was 
made in 1972 (Hauptman & Duax, 1972) where, in 
effect, it was shown how to identify reliably a class of 
enantiomorph-sensitive (i.e. having the value _+r r/2) 
linear combinations of two phases via calculated values 
of appropriate three-phase structure invariants, in 
particular those having the value zc. The initial 
applications of this procedure were made to the 
structure determination of aldosterone monohydrate 
and valinomycin (Duax & Hauptman, 1972a,b), 
structures for which enantiomorph specification had 
been difficult. With the development of the probabilistic 
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theory of the higher-order structure invariants, in 
particular the means to identify reliably the so-called 
negative quartets, and the introduction of the extension 
concept (Hauptman, 1978; but see also Giacovazzo, 
1977, for a related concept called representation 
theory) a new method emerged for identifying the 
enantiomorph-sensitive two-phase structure semin- 
variants by embedding the latter in suitable quartets 
(Hauptman & Green, 1978). Busetta (1976) was the 
first to demonstrate the usefulness of this technique in 
his solution of alborixin (C48H84014. K+), a structure 
for which enantiomorph discrimination was par- 
ticularly difficult. 

Despite the successful applications of the 
enantiomorph-sensitive two-phase structure semin- 
variants, it is clearly important to develop methods for 
reliably identifying still larger classes of enantiomorph- 
sensitive structure seminvariants. In the present paper 
we shall show how to identify relatively large numbers 
of linear combinations of three phases in P21 (variants) 

V =  ~Oh,k,l, + ~Oh~k212 + (OhA, t,, (1.1) 

satisfying 

k I + k 2 + k 3 = 0 (1.2) 

and having the value _+z~/2. If, in addition to (1.2), the 
conditions 

h~ + h 2 + h 3 -  l I + l 2 + 13- 0 (mod 2) (1.3) 

(i.e. h~ + h E + h 3 and l~ + l 2 + 13 are even) are also 
satisfied, then (1.1) is a structure seminvariant (called T 
in the sequel). 

2. The enantiomorph-sensitive three-phase structure 
seminvariants in P21 

The probabilistic theory of the three-phase structure 
seminvariant T in P2~ was recently initiated 
(Hauptman, 1978; Hauptman & Potter, 1979). By 
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embedding T and its symmetry-related variants in 
suitable quintets Q to which T is related via the 
space-group-dependent relationships among the phases, 
one obtains the extensions Q of T. In this way the 
probabilistic theory of the structure seminvariant T is 
reduced to that of the structure invariants Q, which is 
well developed. In particular, the neighborhoods of T 
are defined in terms of the neighborhoods of the Q's. 
Thus the first neighborhood of T is the set-theoretic 
union of the first neighborhoods of all (four) of its 
extensions (seven magnitudes I EI in all); the second 
neighborhood of T is the set-theoretic union of the 
second neighborhoods of all of its extensions (forty-one 
magnitudes I EI in all); etc. As described in this earlier 
work, T has many first neighborhoods, many second 
neighborhoods, etc. By employing the quintet 
extensions Q of T, the theory led to methods for 
identifying and estimating reliably certain of the 
three-phase structure seminvariants T having the value 
0 or 7r (the enantiomorph-insensitive ones). 

In the present paper one employs the (unique) sextet 
extension S of T and is thus led to a method for 
identifying those seminvariants T having the value 
+re~2, i.e. the enantiomorph-sensitive ones. Although 
the method is also capable of identifying those 
seminvariants T having the value 0 or n, it is not able to 
make a unique estimate in this way (but the method of 
the preceding paragraph does have this capability). 

2.1. The extension 

The linear combination of three phases 

T = ~Ph,k,1, + eh:,/: + eh,k,t, (2.1) 

is a structure seminvariant in P2~ if and only if (1.2) 
and (1.3) are satisfied. 

Following methods previously described 
(Hauptman, 1978; Hauptman & Green, 1978), the 
structure seminvariant T is embedded in the six-phase 
structure invariant (sextet) S, called an extension of T, 
by means of 

S -- (Ph,k~l, + ~hzk21, " + (Ph,k,I, + ~)/I,k,-l, + fffh,k21 , + ~[i,kji ~ (2.2) 

SO that, because of (1.2) and the space-group- 
dependent relationships among the phases, 

S = 2T. (2.3) 

Hence, if 

S ~ re, (2.4) 

then 

T ~_ __ zr/2. (2.5) 

2.2. The neighborhoods o f T  

The second sequence [to distinguish it from the 
sequence defined earlier (Hauptman, 1978)] of nested 

neighborhoods of the structure seminvariant T is 
defined to be the sequence of nested neighborhoods of 
the special sextet S (Fortier & Hauptman, 1977). Thus 
the first neighborhood of the second kind of Tis defined 
to consist of the three magnitudes 

R t = IEh,k,ll, i = 1, 2, 3. (2.6) 

Again, the second neighborhood of T of the second 
kind consists of 19 magnitudes IEI, the three 'main 
terms' (2.6) and the additional 16 'cross terms': 

R~2 = IEh,+h2,G,l,.121, R23 = IEh2+G.k,.12+131 , 

R31 = IEh,+h,,G,13+t,I; 

R12 = IEh_h2,G.I_121, R23 -~ IEG_h,k,,12_ll , (2.7) 

R31----IEh_ht,G,l_ll; 

R0i=lE02k,0 I, i = 1 , 2 , 3 ;  

R I 2  3 = IEh,+G+h3,0,1,+12+131 , 
R 123 = IEh,+h2-h,,O.l,+12-l,I, 

R 123 = I Eh,-h2+h3,0,1,-12+l,I, 
R i23 ~--- [E-h,+G+h3,0,-lt+12+l,I; 
R 123 = IEht,k2-k3,1,1, 
R i23 = IEh2,G-G,t~I, 
R i23 ~- Igh,  k,-k,6 i. 

(2.8) 

2.3. The discriminant  o f T  

Following Hauptman & Fortier (1977), the 
discriminant A of T of the second kind is defined by 

+ [o3(15o ] - 10020304 + 0205) y '  
L 15 

where 

+ (30"]-- 0" 2 0"4)2 '~'] - , 0  [ 105o~-  10502 0 2 a4 

+ 15a 2 a 3 05+  lOo~ 042- o 3 06]},  (2.9) 

Ro2 2 2 4 2 4 4 = Ro2R03 + R2,(R43 + R2~-) + Ro2(R31 + .R3i- ) 
15 

2 4 2R212R23R]i + Ro3(R n + R~2)+ 

+ 2R22 R23. R312 2 + 2 R 2 R 2 3 R 2  t 

+ 2R22R2~ R2"3I, (2.10) 
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=R123(R122 2 + R23 
90 

+ R  2 2 m( R 1: + 

+ REr) 2 + 2R 

x (Ro2a + R21 

× (R023 + R~3 

× (R022 + R223 

+ R~I) 2 + R~23(R~2 + R23 + R~I) 2 

R~j + R],) z + RI22~(R~2 + R ~  

l:~(Ro~, + R h  + Rh)  
2 2 + R~r)+ 2Rt2~(Rol + R~2 + R~)  
2 2 2 + R~j)+  2Rr~(Ro~ + R~I + R3~ ) 

+ R~);  (2.1 1) 

z z 2RoZl (R~3 + R22) E = Ro21 Ro22 + Ro2 Ro3 + R23 R°l  + 
45 

~ R h )  + + 2R~2(R~I + R~t) + 2R03(R~2 + R~2 

+ R~3 + R~I + R ~  + R ~  + R~r + 2R~ERZ~3 

+ 2R~3R]I + 2R], R~z + 2R]ER~ + 2R~3 R~i 

+ 2R~R]~  + 2R]~R~a + 2R~jR],  + 2R~iR~2 

2 2 2R2IR 2 . + 2RE2R2j + 2 R 2 j R ~  + 1~, (2.12) 

Rn3(R,2 + R23 + R31 ) + R~23(RI2~ + R223 + R2i)  E __~ 2 2 2 

30 
2 2 2 + Rl~3(gl~ + R22~ + R3~) + R~22j(R~ + R22~ 

+ R]r) + R 2 2 l:j(Ro2 + Rg 3 + R~, + R22 
2 2 + R~r + Rh)  + Ri~3(Ro~ + Ro~l + R h  + R,2~ 

+ R12: + R2j)  + R]~.3(R21 + R22 + R23 + R21 

+ R~j + R]r); (2.13) 

Z ' =  Rgl 
15 

+ R022 + R23 + 2(R~2 + R~3 + R]I + R ~  

R~j + R]I); (2.14) 

E = R223 
1o 

and 

+ R]23 + R1223 + R122~ + 2(R~j  + R]2 ~ + R]23); 

(2.15) 

N 
an= ~. f'], (2.16) 

j = l  

where f j  is the zero-angle atomic scattering factor of 
the j th  atom and N is the number of atoms in the whole 
unit cell. In the X-ray diffraction case the f j  are equal 
to the atomic numbers Zj and are therefore all positive; 
in the neutron diffraction case some of the f j  may be 
negative. 

In the applications one lists the discriminants A in 
ascending algebraic order, the most negative ones 
appearing first. It is known (Hauptman & Fortier, 
1977) that the values of the discriminant are correlated 
with the values of the sextet S in the sense that S ~ 0 or 
S _ n according as A >> 0 or A ,~ 0 respectively. In 
view of (2.4) and (2.5) it follows that the structure 

seminvariant T ~ _+ n/2 when A ,~ 0. [When A >> 0, T.~ 
0 or z~, in view of (2.3).] 

In calculating the discriminant A the full complement 
of 16 cross terms (2.7) and (2.8) will, in general, not be 
available; in such cases the missing cross terms, 
provided there are not more than six of them, are 
replaced by unity, the average value of I EI 2. 

3. Three-phase variants by sextet extensions 

The formalism described in the preceding paragraph 
can be applied more generally to all variants 

V = q~h,k,I, + 09h,k2t2 + ~0h3k, t , (3.1) 

with k~ + k 2 + k 3 = 0 and no condition for the other 
indices. The sextet structure invariant in which (3.1) is 
embedded is again 

S = ~Ohtk, 1 + q)h2k212 +- ~h,k31 ' + (ffh,k,l, + ~Oh,k,l, + ~Oh,kfi3. (3.2) 

In this case too, it follows from the space-group 
symmetries that S = 2 V ]compare with (2.3)]. Thus V 
is estimated to be + ~r/2 if A ,~ 0 and 0 or zr if A >> 0. It 
should be noted that the three-phase seminvariants T 
form a subset of the set V. The advantage of using the 
estimate V = +z~/2 by means of (2.9) instead of only 
the estimate T = +zr/2 is that approximately four times 
as many phase relationships become available for the 
applications. It should be noted finally that choosing 
arbitrarily the sign of a single enantiomorph-sensitive 
structure seminvariant T = +7r/2 is equivalent to 
specifying the enantiomorph. 

4. Tests of  T and V estimates 

The T and V estimating procedures using (2.9) have 
been applied to the following four structures. 

(1) Diethylmalonic acid (DIEMAL) (van der 
Putten, 1979), C7H1204, Z = 4, N = 44, P21. 

(2) Tribenzamide (TRIBEN) (Olthof, 1979), 
C21HIsNO a, Z = 2, N = 50, P21. 

(3) Aldosterone monohydrate (ALDO) (Duax & 
Hauptman, 1972a), C21H2sOs.H20 , Z = 2, N = 54, 
P21. 

(4) Valinomycin (VALI) (Smith, Duax, Langs, 
DeTitta, Edmonds, Rohrer & Weeks, 1975), 
C54H90N6018 , Z = 2, N = 156, P21. 

In order to be able to judge whether the T and V 
estimates are equally reliable all variants V = (0h,k,~, + 
~0h~,,t. + ~0h,k,i, were divided into four groups in 
accbi'dance with the scheme" 

g roupA:h  1 + h  2 + h  3 = 0 ( m o d 2 )  

k I + k 2 + k a = 0 

Ii +12 + l  3 = 0 ( m o d 2 ) ;  (4.1) 
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group B: h I + h 2 + h 3 --- 0 (mod 2) 

k I + k 2 + k 3 = 0 

l~ + l 2 + l a -- 1 (mod 2); (4.2) 

group C: h~ + h 2 + h 3 -= 1 (mod 2) 

k I + k 2 + k a = 0 

l I + l 2 + l a -- 0 (mod 2); 

g r o u p D : h ~  + h  2 + h  a = l ( m o d 2 )  

k I + k 2 + k a = 0 

11 + l  2 + l  a - l ( m o d 2 ) .  

(4.3) 

(4.4) 

It is obvious that  group A consists of  the three-phase 
structure seminvariants  T. For  all test structures the 
strongest  I E I values were used to generate in all groups 
the three-phase var iants  V with the largest values of  

E 3 =- N -1/2 I Eh,k,t, Eh:2t ' Eh,k,t, t. (4.5) 

Then the sextet discr iminants  A [equation (2.9)1 were 
calculated and within the different groups the variants  
were sorted in order of  increasing value of  A, the 
negative ones appearing first. Since A ,~ 0 corresponds 
to S = n and d >> 0 to S = 0, the top of  the list 
comprises the 'enant iomorph-sensi t ive '  variants,  V = 
+z r/2 and the bot tom the 'enant iomorph-insensi t ive '  
ones, V = 0 or ~. 

values range from - 121.5 to - 17-2 for all variants  V 
~_ + zr/2 with E 3 values > 1.5. 

In the above experiment about  1 6 8 0 0 0  variants  
were calculated in all, which is quite a job,  even for the 
modern  computer .  Therefore the test was repeated with 
approximately  23 000 variants  having E a > 1.5, and 
similar results were obtained;  the only difference was 
that  the number  of  V ~_ 0, 7r estimates was smaller. 
F rom these and other experiments it is expected that  
normal ly  the calculat ion of  the 20 0 0 0 - 5 0  000 
strongest  variants  suffices to get all strong A indications 
for V = +z e/2 and the strongest A indications for V = 
0, 7r. 

It should be noted that  the top and the bot tom of  the 
discr iminant  list give estimates for those variants  
which relate the phases of  the strongest  reflections. In 
part icular ,  this applies to the variants  with E 3 > 1.5 
and E 3 > 3.0 (columns 5 and 6 in Table 1). The 
average errors of  these variants  are comparable  to 
those of  the Y2 relationships with E a > 1.5 and E 3 > 
3.0 respectively [44 millicycles for 316 Y2's and 23 
millicycles for 22 Y2's (1000 millicycles = 2 re rad)]. 

Table 2. Average error for  D I E M A L  of the estimates 
o f  V = O, zr in the four  groups A, B, C and D defined 

by (4.1), (4.2), (4.3) and (4.4), respectively 

4.1. D I E M A L  

The strongest  200 I EI values were used to generate 

approximately  42 000 three-phase var iants  V per group Grotip A Group B Group C Group D 
with an  E 3 lower limit of  0.7.  Summaries  of  the NR (DEV) (DEV)  (DEV)  (DEV)  

estimates of  V = +z r/2 and V = 0 or ~z are given in l0 23 29 19 26 
Tables 1 and 2 respectively. It can be seen from the 25 28 35 42 31 
tables that  the reliability of the Vest imates  in all groups 50 40 36 46 37 
is approximate ly  equal. There is no significant 75 43 37 42 41 
difference between the results for the three-phase 100 45 32 43 48 

125 47 35 47 52 
seminvariants  (group A) and the three-phase variants  150 47 38 45 54 
(groups B, C and D). In Table 1, column 5, the A 175 50 37 45 55 

The variants are listed in decreasing order of A [equation (2.9)]. The 
average errors (DEV) are given in millicycles for the number of 
variants (NR) with largest A, where NR has the different values 
shown. 

Table 1. Average error for  D I E M A L  of  the estimates o f  the three-phase variants V = +7r/2 in the four  groups 
A, B, C and D defined by (4.1), (4.2), (4.3) and (4.4) respectively when E 3 > 0.7 and of  the estimates of  all 

variants V =  + rr/2 with E 3 > 1.5 and 3.0 

The variants are listed in increasing order of the d values [equation (2.9)[, i.e. starting with the most negative ones. The average errors 
(DEV) are given in millicycles for the number of variants (NR) with smallest (most negative) A, N R having the different values shown. 

All V_~ +7r/2 All V--- +7r/2 
Group A Group B Group C Group D (E 3 > 1-5) (E 3 > 3.0) 

NR (DEV) (DEV) (DEV) (DEV) (DEV) (DEV) 

5 53 23 39 39 29 29 
10 32 27 49 48 28 28 
20 32 27 61 56 32 30 
40 37 30 59 41 43 39 
60 46 29 63 52 39 
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4.2. TRIBEN 

The s t rongest  200 I EI  values were used to generate 
about  19 000 three-phase var iants  V with E a > 1.0. 
Summar ies  of the est imates of  V _~ +z r/2 are given in 
Table  3. The A values of the var iants  used in column 5 
range from - 3 . 6  to - 1 . 5 .  For  this structure,  which is 
difficult to solve by the usual methods,  the most  reliable 
estimates of  V ~_ _+ zt/2 with E 3 > 1.5 are of  comparable  
qual i ty  to those of  the 38 triplets with E 3 > 1.5 
(average error 64 miUicycles). The small number  of  
var iants  is due to the small max ima  for h and l and the 
large one for k. 

4.3. ALDO 

The strongest  200 I EI values were used to generate 
about  21 000 three-phase var iants  V with E 3 > 1.5. 

Summaries  of  the est imates of V _  _+z r/2 are given in 
Table  4. In this table the A values range from - 1 2 . 0  to 
- 2 . 0  for the overall  group (column 5). P robab ly  
because of  the large number  of restricted phases  for the 
s t rongest  reflections the number  and goodness  of  the 
estimates of  V_~ + z~/2 were relatively poor. 

4.4. VALI  

About  5 0 0 0 0  three-phase var iants  with E a > 1.5 
were generated using the strongest  500 I EI values. 
Summaries  of  the V ~ +7~/2 est imates are given in 
Table  5. The A values range from - 1 3 . 4  to - 3 . 1 .  
Again  the errors of the most  reliable est imates of  V _ 
+zc/2 with E 3 > 2.0  and 1.5 are comparab le  to those o f  
34 and 51 millicycles for the 34 and 190 triplets with E 3 
values > 2.0  and 1.5 respectively. 

Table 3. Average error for  TRIBEN of  the estimates o f  the variants V = +_n/2 in the four  groups A, B, C and D 
defined by (4.1), (4.2), (4.3) and (4.4) respectively with E 3 > 1.0 and o f  the estimates o f  all variants V = +_zr/2 

wi thE  3> 1.O and l . 5 

The variants are listed in increasing order of their A values [equation (2.9)1. The average errors (DEV) are given in millicycles for the 
number of variants (NR) with smallest (most negative) A, NR having the different values shown. 

All V_ +z r/2 All V ~_ ±7~/2 
GroupA Group B Group C Group D (E 3 > 1.0) (E 3 > 1.5) 

NR (DEV) (DEV) (DEV) (DEV) (DEV) (DEV) 

5 49 145 l l3 81 129 77 
10 90 132 94 82 106 88 
20 108 129 97 93 108 88 
40 117 124 85 95 93 113 
60 104 

Table 4. Average error for  ALDO o f  the estimates of  the variants V ~_ +~z/2 in the four  groups A, B, C and D 
with E 3 > 1.5 and o f  the estimates o f  all variants V ~ +~z/2 with E 3 > 1.5 and 2.5 

The variants are listed in increasing order of their A values [equations (2.9)]. The average errors (DEV) are given in millicycles for the 
number of variants (NR) with smallest (most negative) A, NR having the different values shown. 

All V~ ±n/2 All V~ ±n/2 
GroupA Group B Group C Group D (E 3 > 1.5) (E 3 > 2.5) 

NR (DEV) (DEV) (DEV) (DEV) (DEV) (DEV) 

5 47 139 95 84 106 107 
l0 88 134 83 104 98 95 
20 98 123 68 91 102 80 
40 101 117 91 104 91 
60 106 104 103 

Table 5. Average error for  VALI  o f  the estimates o f  the variants V ~ +_zrl2 in the four  groups A, B, C and D 
with E 3 > 1.5 and o f  the estimates o f  all variants V~_ +~z/2 with E 3 > 1.5 and 2.0 

The variants are listed in increasing order of their A value [equation (2.9)]. The average errors (DEV) are given in millicycles for the 
number of variants (NR) with smallest (most negative) A, NR having the different values shown. 

All V~_ +zc/2 All V_~ +zt/2 
Group A Group B Group C Group D (E s > 1.5) (E s > 2.0) 

NR (DEV) (DEV) (DEV) (DEV) (DEV) (DEV) 

5 51 105 159 38 67 30 
10 75 125 90 67 46 41 
20 73 88 77 77 78 73 
40 75 94 68 85 90 69 
60 89 96 82 95 88 75 
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5. Possible applications of the estimates of V _  __.~/2 

In our opinion the V _ +_ n/2 estimates may be applied 
in three different ways. 

(1) Preceding the symbolic addition or multi- 
solution procedure the V ~ +_~/2 estimates can be used 
together with the strongest triplets, the V ~_ 0, zt 
estimates and the T ~ 0 and T _ zt estimates 
(Hauptman & Potter, 1979) for the discrimination 
between centrosymmetric and enantiomorph-sensitive 
phases. This will facilitate the final phasing procedure 
enormously. An example will be given in the next 
section for the structure of DIEMAL. 

(2) The V .-~ _ zt/2 and T ~ 0 or zt estimates may be 
used in an enantiomorph-specific figure of merit (see 
van der Putten, Schenk & Hauptman, 1980). 

(3) In the stage of numerical refinements there are 
two possible applications. Firstly, preceding tangent 
refinement, a modulo zt phase refinement is carried out 
using the variants V ~_ +zr/2, the variants V ~_ 0, lr and 
the seminvariants T ~_ 0 or zr: 

Wsin {[qx. + qh - (V, T, ~0)1 mod ~z} 
k 

tana  h ~_ 

)" Wcos {[oh + Oh-  (V, T, ~0)1 mod zt} 
k 

where (V,T,~o)means the estimated value (0, zt, or +zt/2) 
of a structure seminvariant (or variant) Oh, + oh2 + Oh, 
with hi + h2 + h3 = k, and all phases are limited to 0 < 
a h < zc. This refinement divides the reflections into 
centrosymmetric ones (a h ~_ 0) and enantiomorph- 
sensitive ones (a h ~_ ~z/2). In the next step the a h values 
are used to weight the contributions of phases to the 
usual tangent refinement: 

X Wk Wh-k E3 sin (~, + oh-k) 
It 

tan ~Ph = 

Y Wk Wh_k E3 cos(~0k + ~0~-k) 
k 

with W k oc 1/[I ( ~  mod zt) - ak I]. Thus phases which 
do not get their expected centrosymmetric or enantio- 
morph-sensitive values get a low weight in the tangent 
refinement, and this will help to maintain the enantio- 
morph during refinement. 

Secondly, the V ~_ + n/2 estimates may be used in an 
adapted tangent refinement, similar to the one success- 
fully used with quartet and quintet estimates (van der 
Putten & Schenk, 1979) and described there in detail. 
Here we will confine ourselves to remarking that the V 

+n/2 estimates are mixed with the triplet invariants 
and seminvariants in an enantiomorph-specific 
extension and refinement procedure. 

6. Discrimination between eentrosymmetric and 
enantiomorph-sensitive phases 

If a sufficient number of reliable V ~_ _+ n/2 estimates 
(e.g. A < - 1 0 . 0 )  is available, then it is possible to use 
them together with the most reliable triplets, V ~ 0, 7r 
estimates and T ~_ 0 and T ~ ~r estimates for the 
discrimination between centrosymmetric [(0 = 0 
(mod n)] and noncentrosymmetric phases [(o = n/2 
(mod n)] before starting the final phasing procedure. 
We have applied this to DIEMAL. Firstly, the origin 
was defined with two phase-restricted reflections and 
one general reflection with k index equal to 1. The 
strongest triplet and the second T ~ _+~/2 estimate 
assigned a reflection with large I EI to be enantiomorph 
sensitive. Thereafter, from the 125 strongest reflections 
we could assign 49 reflections to be centrosymmetric 
and 18 reflections to be enantiomorph sensitive using 
the V ,-. _+n/2 estimates with A < --10.0, the strongest 
T ~_ 0 or n estimates and the strongest V _ 0, ~ esti- 
mates. A post-mortem examination showed that all 
assignments were correct. Using these values in our 
symbolic addition program SIMPEL (Overbeek, van 
der Putten, Olthof & Schenk, 1977), we got numerous 
indications that two of the symbolic phases in the 
starting set were centrosymmetric and one was enantio- 
morph sensitive. In this way the number of possible 
solutions was reduced by a factor of eight. Eventually 
the correct solution was found to be the one with the 
highest Y 2 consistency. 

7. Concluding remarks 

The discriminant A [equation (2.9)] used throughout 
this work is based on the general sextet discriminant 
dependent on 31 magnitudes I EI. Here, because the 
sextet S is special, only 19 magnitudes I EI are distinct. 
Thus a better discriminant, presumably leading to a 
more reliable identification of the enantiomorph- 
sensitive seminvariants, remains to be derived in a 
theoretical, more satisfactory way. This work has not 
yet been done because of the enormous size of the 
undertaking. It is nevertheless noteworthy that, in view 
of the applications described here [and others (van der 
Putten, Schenk & Hauptman, 1980)], the discriminant 
A [equation (2.9)] is good enough to identify reliably a 
sufficient number of enantiomorph-sensitive semin- 
variants to be useful in the determination of crystal 
structures. 

It should be noted that discriminants, while useful, 
easily computed and well suited for identifying those 
structure seminvariants having the extreme values 0, zr, 
or +z t/2, are not the most powerful expressions for 
estimating the values of the structure seminvariants. 
The best method is to derive accurate conditional 
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probability distributions of the structure semin- 
variants, assuming as known the magnitudes I EI in 
their neighborhoods; in the present case the 19 
magnitudes I EI in the second neighborhood of T. This 
enormous undertaking has been carried out in only a 
few cases so far, and a great deal of additional work in 
this direction remains to be done. 

HH acknowledges partial support from the National 
Science Foundation, Grant C HE79 D 11282. 
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Abstract 

Formulas for estimating the values (0 or zr) of the 
enantiomorph-insensitive two- and three-phase 
structure seminvariants in P21 and for identifying the 
enantiomorph-sensitive ones (i.e. those having the 
values +~/2) have recently been secured. These 
procedures are here integrated in order to identify still 
more reliably those seminvariants having the values 0, 
7r or +z r/2. The results are employed in two ways to 
strengthen direct-methods procedures. The first makes 
active use of the three-phase structure seminvariants 
alone and the second relies heavily on the three- and 
four-phase structure invariants but employs the semin- 
variant enantiomorph-specific figure of merit CRISEM 
to select the best of a number of possible solutions. The 
heavy dependence on the enantiomorph-sensitive 
seminvariants facilitates the selection and maintenance 
of the enantiomorph, often a source of difficulty in this 
space group. 
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1. Introduction 

Recently a number of probability distributions for two- 
and three-phase structure seminvariants were derived 
on the basis of their quartet, quintet and sextet 
extensions (Hauptman & Green, 1978; Hauptman & 
Potter, 1979; van der Putten, Schenk & Hauptman, 
1980, respectively). Examples were given which 
showed that the reliability of the estimates of the 
seminvariants is good and, particularly in the case of 
the enantiomorph-sensitive seminvariants, applications 
to phase determining procedures in space group P2 l 
were indicated as well. The first object of this paper is 
to show that integrating the different approaches leads 
to still more reliable estimates. Then, secondly, the 
estimates are employed in two direct-methods pro- 
cedures: ab initio phase determination using the 
three-phase seminvariants alone and phase deter- 
mination via the three-phase and four-phase invariants, 
employing the seminvariant enantiomorph-specific 
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